Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(2): 113773, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38350444

RESUMO

Hepatocellular carcinoma (HCC) is an inflammation-associated cancer arising from viral or non-viral etiologies including steatotic liver diseases (SLDs). Expansion of immunosuppressive myeloid cells is a hallmark of inflammation and cancer, but their heterogeneity in HCC is not fully resolved and might underlie immunotherapy resistance. Here, we present a high-resolution atlas of innate immune cells from patients with HCC that unravels an SLD-associated contexture characterized by influx of inflammatory and immunosuppressive myeloid cells, including a discrete population of THBS1+ regulatory myeloid (Mreg) cells expressing monocyte- and neutrophil-affiliated genes. THBS1+ Mreg cells expand in SLD-associated HCC, populate fibrotic lesions, and are associated with poor prognosis. THBS1+ Mreg cells are CD163+ but distinguished from macrophages by high expression of triggering receptor expressed on myeloid cells 1 (TREM1), which contributes to their immunosuppressive activity and promotes HCC tumor growth in vivo. Our data support myeloid subset-targeted immunotherapies to treat HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Receptor Gatilho 1 Expresso em Células Mieloides , Terapia de Imunossupressão , Células Mieloides , Imunossupressores , Inflamação
2.
Intensive Care Med Exp ; 11(1): 51, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37574520

RESUMO

BACKGROUND: The immuno-receptor Triggering Expressed on Myeloid cells-1 (TREM-1) is activated during bacterial infectious diseases, where it amplifies the inflammatory response. Small studies suggest that TREM-1 could be involved in viral infections, including COVID-19. We here aim to decipher whether plasma concentration of the soluble form of TREM-1 (sTREM-1) could predict the outcome of hospitalized COVID-19 patients. METHODS: We conducted a multicentre prospective observational study in 3 university hospitals in France. Consecutive hospitalized patients with confirmed infection with SARS-CoV-2 were enrolled. Plasma concentration of sTREM-1 was measured on admission and then at days 4, 6, 8, 14, 21, and 28 in patients admitted into an ICU (ICU cohort: ICUC) or 3 times a week for patients hospitalized in a medical ward (Conventional Cohort: ConvC). Clinical and biological data were prospectively recorded and patients were followed-up for 90 days. For medical ward patients, the outcome was deemed complicated in case of requirement of increased oxygen supply > 5 L/min, transfer to an ICU, or death. For Intensive Care Unit (ICU) patients, complicated outcome was defined by death in the ICU. RESULTS: Plasma concentration of sTREM-1 at inclusion was higher in ICU patients (n = 269) than in medical ward patients (n = 562) (224 pg/mL (IQR 144-320) vs 147 pg/mL (76-249), p < 0.0001), and higher in patients with a complicated outcome in both cohorts: 178 (94-300) vs 135 pg/mL (70-220), p < 0.0001 in the ward patients, and 342 (288-532) vs 206 pg/mL (134-291), p < 0.0001 in the ICU patients. Elevated sTREM-1 baseline concentration was an independent predictor of complicated outcomes (Hazard Ratio (HR) = 1.5 (1.1-2.1), p = 0.02 in ward patients; HR = 3.8 (1.8-8.0), p = 0.0003 in ICU patients). An sTREM-1 plasma concentration of 224 pg/mL had a sensitivity of 42%, and a specificity of 76% in the ConvC for complicated outcome. In the ICUC, a 287 pg/mL cutoff had a sensitivity of 78%, and a specificity of 74% for death. The sTREM-1 concentrations increased over time in the ConvC patients with a complicated outcome (p = 0.017), but not in the ICUC patients. CONCLUSIONS: In COVID-19 patients, plasma concentration of sTREM-1 is an independent predictor of the outcome, although its positive and negative likelihood ratio are not good enough to guide clinical decision as a standalone marker.

3.
Lancet Respir Med ; 11(10): 894-904, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37269870

RESUMO

BACKGROUND: Activation of the triggering receptor expressed on myeloid cells-1 (TREM-1) pathway is associated with septic shock outcomes. Data suggest that modulation of this pathway in patients with activated TREM-1 might improve survival. Soluble TREM-1 (sTREM-1), a potential mechanism-based biomarker, might facilitate enrichment of patient selection in clinical trials of nangibotide, a TREM-1 modulator. In this phase 2b trial, we aimed to confirm the hypothesis that TREM1 inhibition might improve outcomes in patients with septic shock. METHODS: This double-blind, randomised, placebo-controlled, phase 2b trial assessed the efficacy and safety of two different doses of nangibotide compared with placebo, and aimed to identify the optimum treatment population, in patients across 42 hospitals with medical, surgical, or mixed intensive care units (ICUs) in seven countries. Non-COVID-19 patients (18-85 years) meeting the standard definition of septic shock, with documented or suspected infection (lung, abdominal, or urinary [in patients ≥65 years]), were eligible within 24 h of vasopressor initiation for the treatment of septic shock. Patients were randomly assigned in a 1:1:1 ratio to intravenous nangibotide 0·3 mg/kg per h (low-dose group), nangibotide 1·0 mg/kg per h (high-dose group), or matched placebo, using a computer-generated block randomisation scheme (block size 3). Patients and investigators were masked to treatment allocation. Patients were grouped according to sTREM-1 concentrations at baseline (established from sepsis observational studies and from phase 2a change to data) into high sTREM-1 (≥ 400 pg/mL). The primary outcome was the mean difference in total Sequential Organ Failure Assessment (SOFA) score from baseline to day 5 in the low-dose and high-dose groups compared with placebo, measured in the predefined high sTREM-1 (≥ 400 pg/mL) population and in the overall modified intention-to-treat population. Secondary endpoints included all-cause 28-day mortality, safety, pharmacokinetics, and evaluation of the relationship between TREM-1 activation and treatment response. This study is registered with EudraCT, 2018-004827-36, and Clinicaltrials.gov, NCT04055909. FINDINGS: Between Nov 14, 2019, and April 11, 2022, of 402 patients screened, 355 were included in the main analysis (116 in the placebo group, 118 in the low-dose group, and 121 in the high-dose group). In the preliminary high sTREM-1 population (total 253 [71%] of 355; placebo 75 [65%] of 116; low-dose 90 [76%] of 118; high-dose 88 [73%] of 121), the mean difference in SOFA score from baseline to day 5 was 0·21 (95% CI -1·45 to 1·87, p=0·80) in the low-dose group and 1·39 (-0·28 to 3·06, p=0·104) in the high-dose group versus placebo. In the overall population, the difference in SOFA score from baseline to day 5 between the placebo group and low-dose group was 0·20 (-1·09 to 1·50; p=0·76),and between the placebo group and the high-dose group was 1·06 (-0·23 to 2·35, p=0·108). In the predefined high sTREM-1 cutoff population, 23 (31%) patients in the placebo group, 35 (39%) in the low-dose group, and 25 (28%) in the high-dose group had died by day 28. In the overall population, 29 (25%) patients in the placebo, 38 (32%) in the low-dose, and 30 (25%) in the high-dose group had died by day 28. The number of treatment-emergent adverse events (111 [96%] patients in the placebo group, 113 [96%] in the low-dose group, and 115 [95%] in the high-dose group) and serious treatment-emergent adverse events (28 [24%], 26 [22%], and 31 [26%]) was similar between all three groups. High-dose nangibotide led to a clinically relevant improvement in SOFA score (of two points or more) from baseline to day 5 over placebo in those with higher cutoff concentrations (≥532 pg/mL) of sTREM-1 at baseline. Low dose nangibotide displayed a similar pattern with lower magnitude of effect across all cutoff values. INTERPRETATION: This trial did not achieve the primary outcome of improvement in SOFA score at the predefined sTREM-1 value. Future studies are needed to confirm the benefit of nangibotide at higher concentrations of TREM-1 activation. FUNDING: Inotrem.


Assuntos
Choque Séptico , Humanos , Biomarcadores , Método Duplo-Cego , Choque Séptico/tratamento farmacológico , Resultado do Tratamento , Receptor Gatilho 1 Expresso em Células Mieloides
4.
EClinicalMedicine ; 60: 102013, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37350989

RESUMO

Background: Activation of the TREM-1 pathway is associated with outcome in life threatening COVID-19. Data suggest that modulation of this pathway with nangibotide, a TREM-1 modulator may improve survival in TREM-1 activated patients (identified using the biomarker sTREM-1). Methods: Phase 2 double-blind randomized controlled trial assessing efficacy, safety, and optimum treatment population of nangibotide (1.0 mg/kg/h) compared to placebo. Patients aged 18-75 years were eligible within 7 days of SARS-CoV-2 documentation and within 48 h of the onset of invasive or non-invasive respiratory support because of COVID-19-related ARDS. Patients were included from September 2020 to April 2022, with a pause in recruitment between January and August 2021. Primary outcome was the improvement in clinical status defined by a seven-point ordinal scale in the overall population with a planned sensitivity analysis in the subgroup of patients with a sTREM-1 level above the median value at baseline (high sTREM-1 group). Secondary endpoints included safety and all-cause 28-day and day 60 mortality. The study was registered in EudraCT (2020-001504-42) and ClinicalTrials.gov (NCT04429334). Findings: The study was stopped after 220 patients had been recruited. Of them, 219 were included in the mITT analysis. Nangibotide therapy was associated with an improved clinical status at day 28. Fifty-two (52.0%) of patients had improved in the placebo group compared to 77 (64.7%) of the nangibotide treated population, an odds ratio (95% CI) for improvement of 1.79 (1.02-3.14), p = 0.043. In the high sTREM-1 population, 18 (32.7%) of placebo patients had improved by day 28 compared to 26 (48.1%) of treated patients, an odds ratio (95% CI) of 2.17 (0.96-4.90), p = 0.063 was observed. In the overall population, 28 (28.0%) of placebo treated patients were not alive at the day 28 visit compared to 19 (16.0%) of nangibotide treated patients, an absolute improvement (95% CI) in all-cause mortality at day 28, adjusted for baseline clinical status of 12.1% (1.18-23.05). In the high sTREM-1 population (n = 109), 23 (41.8%) of patients in the placebo group and 12 (22.2%) of patients in the nangibotide group were not alive at day 28, an adjusted absolute reduction in mortality of 19.9% (2.78-36.98). The rate of treatment emergent adverse events was similar in both placebo and nangibotide treated patients. Interpretation: Whilst the study was stopped early due to low recruitment rate, the ESSENTIAL study demonstrated that TREM-1 modulation with nangibotide is safe in COVID-19, and results in a consistent pattern of improved clinical status and mortality compared to placebo. The relationship between sTREM-1 and both risk of death and treatment response merits further evaluation of nangibotide using precision medicine approaches in life threatening viral pneumonitis. Funding: The study was sponsored by Inotrem SA.

5.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108440

RESUMO

Severe forms of coronavirus 2019 (COVID-19) disease are caused by an exaggerated systemic inflammatory response and subsequent inflammation-related coagulopathy. Anti-inflammatory treatment with low dose dexamethasone has been shown to reduce mortality in COVID-19 patients requiring oxygen therapy. However, the mechanisms of action of corticosteroids have not been extensively studied in critically ill patients in the context of COVID-19. Plasma biomarkers of inflammatory and immune responses, endothelial and platelet activation, neutrophil extracellular trap formation, and coagulopathy were compared between patients treated or not by systemic dexamethasone for severe forms of COVID-19. Dexamethasone treatment significantly reduced the inflammatory and lymphoid immune response in critical COVID-19 patients but had little effect on the myeloid immune response and no effect on endothelial activation, platelet activation, neutrophil extracellular trap formation, and coagulopathy. The benefits of low dose dexamethasone on outcome in critical COVID-19 can be partially explained by a modulation of the inflammatory response but not by reduction of coagulopathy. Future studies should explore the impact of combining dexamethasone with other immunomodulatory or anticoagulant drugs in severe COVID-19.


Assuntos
COVID-19 , Citocinas , Humanos , SARS-CoV-2 , Estado Terminal , Tratamento Farmacológico da COVID-19 , COVID-19/complicações , Dexametasona/farmacologia , Dexametasona/uso terapêutico
6.
Crit Care Explor ; 5(3): e0869, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36861044

RESUMO

Sepsis-acquired immunosuppression may play a major role in patients' prognosis through increased risk of secondary infections. Triggering receptor expressed on myeloid cells 1 (TREM-1) is an innate immune receptor involved in cellular activation. Its soluble form (sTREM-1) has been described as a robust marker of mortality in sepsis. The objective of this study was to evaluate its association with the occurrence of nosocomial infections alone or in combination with human leucocyte antigen-DR on monocytes (mHLA-DR). DESIGN: Observational study. SETTING: University Hospital in France. PATIENTS: One hundred sixteen adult septic shock patients as a post hoc study from the IMMUNOSEPSIS cohort (NCT04067674). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Plasma sTREM-1 and monocyte HLA-DR were measured at day 1 or 2 (D1/D2), D3/D4, and D6/D8 after admission. Associations with nosocomial infection were evaluated through multivariable analyses. At D6/D8, both markers were combined, and association with increased risk of nosocomial infection was evaluated in the subgroup of patients with most deregulated markers in a multivariable analysis with death as a competing risk. Significantly decreased mHLA-DR at D6/D8 and increased sTREM-1 concentrations were measured at all time points in nonsurvivors compared with survivors. Decreased mHLA-DR at D6/D8 was significantly associated with increased risk of secondary infections after adjustment for clinical parameters with a subdistribution hazard ratio of 3.61 (95% CI, 1.39-9.34; p = 0.008). At D6/D8, patients with persistently high sTREM-1 and decreased mHLA-DR presented with a significantly increased risk of infection (60%) compared with other patients (15.7%). This association remained significant in the multivariable model (subdistribution hazard ratio [95% CI], 4.65 [1.98-10.9]; p < 0.001). CONCLUSIONS: In addition to its prognostic interest on mortality, sTREM-1, when combined with mHLA-DR, may help to better identify immunosuppressed patients at risk of nosocomial infections.

7.
Front Oncol ; 12: 927440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875168

RESUMO

Inflammation is recognized as one of the hallmarks of cancer. Indeed, strong evidence indicates that chronic inflammation plays a major role in oncogenesis, promoting genome instability, epigenetic alterations, proliferation and dissemination of cancer cells. Mononuclear phagocytes (MPs) have been identified as key contributors of the inflammatory infiltrate in several solid human neoplasia, promoting angiogenesis and cancer progression. One of the most described amplifiers of MPs pro-inflammatory innate immune response is the triggering receptors expressed on myeloid cells 1 (TREM-1). Growing evidence suggests TREM-1 involvement in oncogenesis through cancer related inflammation and the surrounding tumor microenvironment. In human oncology, high levels of TREM-1 and/or its soluble form have been associated with poorer survival data in several solid malignancies, especially in hepatocellular carcinoma and lung cancer. TREM-1 should be considered as a potential biomarker in human oncology and could be used as a new therapeutic target of interest in human oncology (TREM-1 inhibitors, TREM-1 agonists). More clinical studies are urgently needed to confirm TREM-1 (and TREM family) roles in the prognosis and the treatment of human solid cancers.

8.
EBioMedicine ; 77: 103893, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35219085

RESUMO

BACKGROUND: SARS-CoV-2 targets endothelial cells through the angiotensin-converting enzyme 2 receptor. The resulting endothelial injury induces widespread thrombosis and microangiopathy. Nevertheless, early specific markers of endothelial dysfunction and vascular redox status in COVID-19 patients are currently missing. METHODS: Observational study including ICU and non-ICU adult COVID-19 patients admitted in hospital for acute respiratory failure, compared with control subjects matched for cardiovascular risk factors similar to ICU COVID-19 patients, and ICU septic shock patients unrelated to COVID-19. FINDINGS: Early SARS-CoV-2 infection was associated with an imbalance between an exacerbated oxidative stress (plasma peroxides levels in ICU patients vs. controls: 1456.0 ± 400.2 vs 436 ± 272.1 mmol/L; P < 0.05) and a reduced nitric oxide bioavailability proportional to disease severity (5-α-nitrosyl-hemoglobin, HbNO in ICU patients vs. controls: 116.1 ± 62.1 vs. 163.3 ± 46.7 nmol/L; P < 0.05). HbNO levels correlated with oxygenation parameters (PaO2/FiO2 ratio) in COVID-19 patients (R2 = 0.13; P < 0.05). Plasma levels of angiotensin II, aldosterone, renin or serum level of TREM-1 ruled out any hyper-activation of the renin-angiotensin-aldosterone system or leucocyte respiratory burst in ICU COVID-19 patients, contrary to septic patients. INTERPRETATION: Endothelial oxidative stress with ensuing decreased NO bioavailability appears as a likely pathogenic factor of endothelial dysfunction in ICU COVID-19 patients. A correlation between NO bioavailability and oxygenation parameters is observed in hospitalized COVID-19 patients. These results highlight an urgent need for oriented research leading to a better understanding of the specific endothelial oxidative stress that occurs during SARS-CoV-2. FUNDING: Stated in the acknowledgments section.


Assuntos
COVID-19 , Adulto , Células Endoteliais , Humanos , Óxido Nítrico , Estresse Oxidativo , SARS-CoV-2
9.
Front Endocrinol (Lausanne) ; 13: 983827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699032

RESUMO

Introduction: The low-grade inflammatory state present in obesity leads to the development and perpetuation of comorbidities associated with obesity. Our laboratory has been working for several years on an amplification loop of the inflammatory response mediated by TREM-1 (Triggering Receptor of Expressed on Myeloid Cells-1). It is implicated in many acute (septic shock) and chronic (IBD) inflammatory diseases. Previously, TREM-1 has been shown to be overexpressed in adipose and liver tissue in obese and diabetic patients, but its impact has never been characterized in these pathologies. Methods: Our hypothesis is that TREM-1 plays a major role in the generation and perpetuation of inflammation during obesity and its associated complication (Insulin resistance and cardiac dysfunction). We assessed TREM-1 protein expression by western blot and immunofluorescence in omental and subcutaneous (pre-)adipocyte. Moreover, we submitted mice to a high-fat diet and investigated the effects of the genetic Trem1 deletion (trem1 KO mice). Results: We showed, for the first time, that TREM-1 is expressed and is functional in subcutaneous and omental (pre-)adipocytes. In the mouse model of high-fat diet-induced obesity, we found that Trem1 suppression limited weight gain, insulin resistance and inflammation in white adipose tissue and liver. Discussion/conclusion: Our results reveal the trem1 KO model can be viewed as a preventive model and that TREM-1 seems to play an important role in the development of obesity and its associated complication. It could therefore be a new therapeutic target in this context.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Receptor Gatilho 1 Expresso em Células Mieloides , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Resistência à Insulina/genética , Células Mieloides , Obesidade/genética , Obesidade/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/genética
10.
Int J Cardiol ; 344: 213-219, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34534607

RESUMO

INTRODUCTION: Triggering receptor expressing on myeloid cells (TREM)-1 is involved in the pathophysiology of ischemic heart disease. Plasma soluble TREM-1 levels (sTREM-1) has been associated with increased risk of major adverse cardiovascular events (MACE) in acute myocardial infarction (AMI) patients. However, the causative link between TREM-1 and MACE remains unknown and requires further investigation before developing potential therapeutic approaches. METHODS AND RESULTS: Using the serum and DNA data bank from the prospective, nationwide French registry of Acute ST-elevation and non-ST-elevation Myocardial Infarction (FAST-MI 2010, N = 1293), we studied the association of plasma levels of sTREM-1 with 9 common genetic variants at the TREM1 locus and their relationship with recurrent MACE over a 3-year follow up. Plasma levels of sTREM-1 were associated with an increased risk of MACEs (death, recurrent MI or stroke) (adjusted HR = 1.86, 95%CI = 1.06-3.26 and HR = 1.11, 95%CI = 0.61-2.02 respectively for tertiles 3 and 2 versus tertile 1, P < 0.001). The study of common variants identified two major genetic determinants of sTREM-1 (rs4714449: beta = -0.11, Padd = 7.85 × 10-5 and rs3804276: beta = 0.18, Padd = 2.65 × 10-11) with a potential role on maintenance and/or differentiation of hematopoietic stem cells. However, associated variants only explained 4% of sTREM-1 variance (P = 2.74 × 10-14). Moreover, the rs4714449 variant, individually and in haplotype, was not significantly associated with MACE (HR = 0.61, 95%CI: 0.35-1.05, P = 0.07). CONCLUSIONS: Despite its relationship with increased risk of death, recurrent MI and stroke, genetic determinants of plasma levels of sTREM-1 were not found to be causal prognostic factors in patients with acute myocardial infarction.


Assuntos
Infarto do Miocárdio , Infarto do Miocárdio sem Supradesnível do Segmento ST , Receptor Gatilho 1 Expresso em Células Mieloides , Humanos , Células Mieloides , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/genética , Estudos Prospectivos , Receptor Gatilho 1 Expresso em Células Mieloides/sangue , Receptor Gatilho 1 Expresso em Células Mieloides/genética
12.
BMJ Open ; 11(7): e042921, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233965

RESUMO

INTRODUCTION: Septic shock is the subgroup of patients with sepsis, which presents as vasopressor dependence, an elevated blood lactate concentration and is associated with a mortality of at least 30%. Expression of the triggering receptor expressed on myeloid cells 1 (TREM-1) pathway, measured using a serum biomarker of pathway activation (soluble TREM-1, sTREM-1) has been associated with outcome in septic shock. Preclinical and early phase patient data suggest that therapeutic modulation of this pathway may improve survival. METHODS AND ANALYSIS: Efficacy, Safety and Tolerability of Nangibotide in Patients with Septic Shock is a phase IIb randomised controlled trial that will take place in up to 50 centres in seven countries and recruit 450 patients with septic shock to receive either placebo or one of two doses of nangibotide, a novel regulator of the TREM-1 pathway. The primary outcome will be the impact of nangibotide therapy on the change in Sequential Organ Failure Assessment score from a baseline determined before initiation of study drug therapy. This will be assessed first in the patients with an elevated sTREM-1 level and then in the study population as a whole. In addition to safety, secondary outcomes of the study will include efficacy of nangibotide in relation to sTREM-1 levels in terms of organ function, mortality and long-term morbidity. This study will also facilitate the development of a novel platform for the measurement of sTREM-1 at the point of care. ETHICS AND DISSEMINATION: The study has been approved by the responsible ethics committees/institutional review boards in all study countries: Belgium: Universitair Ziekenhuis Antwerpen, France: CPP Ile de France II, Denmark: Region Hovedstaden, Spain: ethics committee from Valld'Hebron Hospital, Barcelona, Finland: Tukija, Ireland: St. James' Hospital (SJH) / Tallaght University Hospital (TUH) Joint Research Ethics Committee, USA: Lifespan, Providence TRIAL REGISTRATION NUMBERS: EudraCT Number: 2018-004827-36 and NCT04055909.


Assuntos
Choque Séptico , Bélgica , Finlândia , França , Humanos , Irlanda , Ensaios Clínicos Controlados Aleatórios como Assunto , Choque Séptico/tratamento farmacológico , Espanha , Resultado do Tratamento
13.
Biosci Rep ; 41(7)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34195785

RESUMO

Patients with sepsis display increased concentrations of sTREM-1 (soluble Triggering Receptor Expressed on Myeloid cells 1), and a phase II clinical trial focusing on TREM-1 modulation is ongoing. We investigated whether sTREM-1 circulating concentrations are associated with the outcome of patients with coronavirus disease 2019 (COVID-19) to assess the role of this pathway in COVID-19. This observational study was performed in two independent cohorts of patients with COVID-19. Plasma concentrations of sTREM-1 were assessed after ICU admission (pilot cohort) or after COVID-19 diagnosis (validation cohort). Routine laboratory and clinical parameters were collected from electronic patient files. Results showed sTREM-1 plasma concentrations were significantly elevated in patients with COVID-19 (161 [129-196] pg/ml) compared to healthy controls (104 [75-124] pg/ml; P<0.001). Patients with severe COVID-19 needing ICU admission displayed even higher sTREM-1 concentrations compared to less severely ill COVID-19 patients receiving clinical ward-based care (235 [176-319] pg/ml and 195 [139-283] pg/ml, respectively, P = 0.017). In addition, higher sTREM-1 plasma concentrations were observed in patients who did not survive the infection (326 [207-445] pg/ml) compared to survivors (199 [142-278] pg/ml, P<0.001). Survival analyses indicated that patients with higher sTREM-1 concentrations are at higher risk for death (hazard ratio = 3.3, 95%CI: 1.4-7.8). In conclusion, plasma sTREM-1 concentrations are elevated in patients with COVID-19, relate to disease severity, and discriminate between survivors and non-survivors. This suggests that the TREM-1 pathway is involved in the inflammatory reaction and the disease course of COVID-19, and therefore may be considered as a therapeutic target in severely ill patients with COVID-19.


Assuntos
COVID-19/diagnóstico , Receptor Gatilho 1 Expresso em Células Mieloides/sangue , Idoso , Biomarcadores/sangue , COVID-19/sangue , COVID-19/mortalidade , COVID-19/virologia , Estudos de Casos e Controles , Feminino , Voluntários Saudáveis , Mortalidade Hospitalar , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Medição de Risco/métodos , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Análise de Sobrevida
14.
Cell Mol Immunol ; 18(2): 452-460, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33420354

RESUMO

During sepsis, neutrophil activation induces endothelial cell (EC) dysfunction partly through neutrophil extracellular trap (NET) release. The triggering receptor expressed on myeloid cell-1 (TREM-1) is an orphan immune receptor that amplifies the inflammatory response mediated by Toll-like receptor-4 (TLR4) engagement. Although the key role of TLR4 signaling in NETosis is known, the role of TREM-1 in this process has not yet been investigated. Here, we report that TREM-1 potentiates NET release by human and murine neutrophils and is a component of the NET structure. In contrast, pharmacologic inhibition or genetic ablation of TREM-1 decreased NETosis in vitro and during experimental septic shock in vivo. Moreover, isolated NETs were able to activate ECs and impair vascular reactivity, and these deleterious effects were dampened by TREM-1 inhibition. TREM-1 may, therefore, constitute a new therapeutic target to prevent NETosis and associated endothelial dysfunction.


Assuntos
Endotélio Vascular/imunologia , Armadilhas Extracelulares/fisiologia , Neutrófilos/imunologia , Sepse/prevenção & controle , Receptor Gatilho 1 Expresso em Células Mieloides/fisiologia , Adolescente , Adulto , Idoso , Animais , Endotélio Vascular/metabolismo , Voluntários Saudáveis , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Sepse/imunologia , Sepse/patologia , Transdução de Sinais , Receptor Gatilho 1 Expresso em Células Mieloides/antagonistas & inibidores , Adulto Jovem
15.
Front Med (Lausanne) ; 8: 780750, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111777

RESUMO

Critical COVID-19, like septic shock, is related to a dysregulated systemic inflammatory reaction and is associated with a high incidence of thrombosis and microthrombosis. Improving the understanding of the underlying pathophysiology of critical COVID-19 could help in finding new therapeutic targets already explored in the treatment of septic shock. The current study prospectively compared 48 patients with septic shock and 22 patients with critical COVID-19 regarding their clinical characteristics and outcomes, as well as key plasmatic soluble biomarkers of inflammation, coagulation, endothelial activation, platelet activation, and NETosis. Forty-eight patients with matched age, gender, and co-morbidities were used as controls. Critical COVID-19 patients exhibited less organ failure but a prolonged ICU length-of-stay due to a prolonged respiratory failure. Inflammatory reaction of critical COVID-19 was distinguished by very high levels of interleukin (IL)-1ß and T lymphocyte activation (including IL-7 and CD40L), whereas septic shock displays higher levels of IL-6, IL-8, and a more significant elevation of myeloid response biomarkers, including Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) and IL-1ra. Subsequent inflammation-induced coagulopathy of COVID-19 also differed from sepsis-induced coagulopathy (SIC) and was characterized by a marked increase in soluble tissue factor (TF) but less platelets, antithrombin, and fibrinogen consumption, and less fibrinolysis alteration. In conclusion, COVID-19 inflammation-induced coagulopathy substantially differs from SIC. Modulating TF release and activity should be evaluated in critical COVID-19 patients.

16.
J Clin Invest ; 131(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33258804

RESUMO

The triggering receptor expressed on myeloid cells 1 (TREM-1) drives inflammatory responses in several cardiovascular diseases but its role in abdominal aortic aneurysm (AAA) remains unknown. Our objective was to explore the role of TREM-1 in a mouse model of angiotensin II-induced (AngII-induced) AAA. TREM-1 expression was detected in mouse aortic aneurysm and colocalized with macrophages. Trem1 gene deletion (Apoe-/-Trem1-/-), as well as TREM-1 pharmacological blockade with LR-12 peptide, limited both AAA development and severity. Trem1 gene deletion attenuated the inflammatory response in the aorta, with a reduction of Il1b, Tnfa, Mmp2, and Mmp9 mRNA expression, and led to a decreased macrophage content due to a reduction of Ly6Chi classical monocyte trafficking. Conversely, antibody-mediated TREM-1 stimulation exacerbated Ly6Chi monocyte aorta infiltration after AngII infusion through CD62L upregulation and promoted proinflammatory signature in the aorta, resulting in worsening AAA severity. AngII infusion stimulated TREM-1 expression and activation on Ly6Chi monocytes through AngII receptor type I (AT1R). In human AAA, TREM-1 was detected and TREM1 mRNA expression correlated with SELL mRNA expression. Finally, circulating levels of sTREM-1 were increased in patients with AAA when compared with patients without AAA. In conclusion, TREM-1 is involved in AAA pathophysiology and may represent a promising therapeutic target in humans.


Assuntos
Angiotensina II/efeitos adversos , Aneurisma da Aorta Abdominal/metabolismo , Movimento Celular/efeitos dos fármacos , Monócitos/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Angiotensina II/farmacologia , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/patologia , Movimento Celular/genética , Deleção de Genes , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Knockout para ApoE , Monócitos/patologia , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
17.
Intensive Care Med ; 46(7): 1425-1437, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32468087

RESUMO

PURPOSE: Nangibotide is a specific TREM-1 inhibitor that tempered deleterious host-pathogens interactions, restored vascular function, and improved survival, in animal septic shock models. This study evaluated the safety and pharmacokinetics of nangibotide and its effects on clinical and pharmacodynamic parameters in septic shock patients. METHODS: This was a multicenter randomized, double-blind, two-stage study. Patients received either continuous infusion of nangibotide (0.3, 1.0, or 3.0 mg/kg/h) or placebo. Treatment began < 24 h after shock onset and continued for up to 5 days. Safety primary outcomes were adverse events (AEs), whether serious or not, and death. Exploratory endpoints evaluated nangibotide effects on pharmacodynamics, organ function, and mortality, and were analyzed according to baseline sTREM-1 concentrations. RESULTS: Forty-nine patients were randomized. All treatment emergent AEs (TEAEs) were collected until Day 28. No significant differences were observed in TEAEs between treatment groups. No drug withdrawal linked to TEAE nor appearance of anti-drug antibodies were reported. Nangibotide pharmacokinetics appeared to be dose-proportional and clearance was dose-independent. Nangibotide did not significantly affect pharmacodynamic markers. Decrease in SOFA score LS mean change (± SE) from baseline to Day 5 in pooled nangibotide groups versus placebo was - 0.7 (± 0.85) in the randomized population and - 1.5 (± 1.12) in patients with high baseline plasma sTREM-1 concentrations (non-significant). This pattern was similar to organ support end points. CONCLUSION: No significant increases in TEAEs were detected in nangibotide-treated patients versus placebo. These results encourage further evaluation of nangibotide and further exploration of plasma sTREM-1 concentrations as a predictive efficacy biomarker.


Assuntos
Choque Séptico , Animais , Método Duplo-Cego , Humanos , Fatores Imunológicos , Choque Séptico/tratamento farmacológico , Resultado do Tratamento
18.
J Thromb Haemost ; 18(2): 454-462, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31680426

RESUMO

BACKGROUND: New evidence has shown the link between inflammation and thrombosis. Triggering receptor expressed on myeloid cells-1 (TREM-1) is an immunoreceptor expressed mostly on neutrophils and monocytes/macrophages. TREM-1 acts as an amplifier of the inflammatory response, and its pharmacological inhibition displays protective effects in various models of inflammatory disorders, in particular by dampening coagulation abnormalities and thrombocytopenia observed during acute inflammation. OBJECTIVES: We aimed to decipher the role of TREM-1 in fostering thrombin generation. METHODS: We measured thrombin generation (TG) by the use of calibrated automated thrombography with whole blood, and isolated primary human neutrophils and monocytes upon stimulation with lipopolysaccharide (LPS). Tissue factor (TF) expression was measured by flow cytometry and its activity by ELISA. Phosphatidylserine (PtdSer) exposure was determined by flow cytometry. A dodecapeptide (LR12) was used as a specific inhibitor of TREM-1. RESULTS: LPS increased TG, TF expression, and activity, as well as the exposure of PtdSer on the surface of monocytes. LR12 dampened TF activity through the decrease of PtdSer exposure, leading to a reduction of thrombin generation. CONCLUSIONS: TREM-1 inhibition decreases thrombin generation and could be an interesting target for the development of new inhibitors of leukocyte-associated thrombotic activity.


Assuntos
Monócitos , Trombina , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Humanos , Lipopolissacarídeos , Células Mieloides
19.
Front Immunol ; 10: 2314, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632399

RESUMO

TREM-1 (Triggering Receptor Expressed on Myeloid cells-1) is an immunoreceptor expressed on neutrophils, monocytes/macrophages, and endothelial cells. It amplifies the inflammatory response driven by Toll-Like Receptors (TLR) engagement. The pharmacological inhibition of TREM-1 confers protection in several pre-clinical models of acute inflammation. In this study, we aimed to investigate the role of TREM-1 in endothelial cells using a sneaking ligand construct (SLC) inhibiting TREM-1 in the endothelium. The SLC was made of 3 modules: an E-selectin targeting domain, a Pseudomonas aeruginosa exotoxin a translocation domain, and a 7 aa peptide (LSKSLVF) that contains the interaction site between TREM-1 and its adaptor protein DAP-12. SLC peptide was effectively picked up by endothelial cells following LPS stimulation. It decreased LPS induced TREM-1 up-regulation and cell activation, neutrophils extravasation, and improved median survival time during experimental peritonitis in mice. We reported that a targeted endothelial TREM-1 inhibition is able to dampen cell activation and to confer protection during septic shock in mice. The use of such cell-specific, ligand- independent TREM-1 inhibitors deserve further investigations during acute or chronic inflammatory disorders.


Assuntos
Endotélio/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Animais , Biomarcadores , Linhagem Celular , Células Endoteliais/metabolismo , Expressão Gênica , Humanos , Contagem de Leucócitos , Ligantes , Lipopolissacarídeos/imunologia , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Peritonite/etiologia , Peritonite/metabolismo , Peritonite/patologia , Ligação Proteica
20.
Cell Mol Immunol ; 16(5): 460-472, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29568119

RESUMO

The triggering receptor expressed on myeloid cells-1 (TREM-1) is a receptor expressed on innate immune cells. By promoting the amplification of inflammatory signals that are initially triggered by Toll-like receptors (TLRs), TREM-1 has been characterized as a major player in the pathophysiology of acute and chronic inflammatory diseases, such as septic shock, myocardial infarction, atherosclerosis, and inflammatory bowel diseases. However, the molecular events leading to the activation of TREM-1 in innate immune cells remain unknown. Here, we show that TREM-1 is activated by multimerization and that the levels of intracellular Ca2+ release, reactive oxygen species, and cytokine production correlate with the degree of TREM-1 aggregation. TREM-1 activation on primary human monocytes by LPS required a two-step process consisting of upregulation followed by clustering of TREM-1 at the cell surface, in contrast to primary human neutrophils, where LPS induced a rapid cell membrane reorganization of TREM-1, which confirmed that TREM-1 is regulated differently in primary human neutrophils and monocytes. In addition, we show that the ectodomain of TREM-1 is able to homooligomerize in a concentration-dependent manner, which suggests that the clustering of TREM-1 on the membrane promotes its oligomerization. We further show that the adapter protein DAP12 stabilizes TREM-1 surface expression and multimerization. TREM-1 multimerization at the cell surface is also mediated by its endogenous ligand, a conclusion supported by the ability of the TREM-1 inhibitor LR12 to limit TREM-1 multimerization. These results provide evidence for ligand-induced, receptor-mediated dimerization of TREM-1. Collectively, our findings uncover the mechanisms necessary for TREM-1 activation in monocytes and neutrophils.


Assuntos
Membrana Celular/metabolismo , Inflamação/imunologia , Monócitos/imunologia , Neutrófilos/imunologia , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sinalização do Cálcio , Humanos , Imunidade Inata , Lipopolissacarídeos , Proteínas de Membrana/metabolismo , Cultura Primária de Células , Multimerização Proteica , Espécies Reativas de Oxigênio/metabolismo , Agregação de Receptores , Receptor Gatilho 1 Expresso em Células Mieloides/imunologia , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...